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Abstract

Circular and non-flat data distributions are preva-
lent across diverse domains of data science, yet
their specific geometric structures often remain
underutilized in machine learning frameworks. A
principled approach to accounting for the underly-
ing geometry of such data is pivotal, particularly
when extending statistical models, like the per-
vasive Gaussian distribution. In this work, we
tackle those issue by focusing on the manifold
of symmetric positive definite (SPD) matrices, a
key focus in information geometry. We introduce
a non-isotropic wrapped Gaussian by leveraging
the exponential map, we derive theoretical prop-
erties of this distribution and propose a maximum
likelihood framework for parameter estimation.
Furthermore, we reinterpret established classifiers
on SPD through a probabilistic lens and introduce
new classifiers based on the wrapped Gaussian
model. Experiments on synthetic and real-world
datasets demonstrate the robustness and flexibility
of this geometry-aware distribution, underscor-
ing its potential to advance manifold-based data
analysis. This work lays the groundwork for ex-
tending classical machine learning and statistical
methods to more complex and structured data.

1. Introduction

When dealing with complex data, modeling them as lying
on a manifold often provides a powerful solution (Sanborn
et al., 2024; Jo & Hwang, 2024). However, classical Eu-
clidean probability distributions fail to capture the intrinsic
geometry of the underlying manifold. This limitation ne-
cessitates adapting the choice of probability distributions to
respect the manifold’s structure. In this work, we propose a
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solution by leveraging the exponential map to wrap proba-
bility distributions defined in the Euclidean tangent space
onto the manifold itself. This approach yields a wrapped dis-
tribution, intrinsically aligned with the manifold’s geometry.
Wrapped distributions have found applications across many
domains, such as embedding single-cell RNA data (Ding &
Regev, 2021), analyzing wave patterns (Jona-Lasinio et al.,
2012), recognizing video and image features (Turaga et al.,
2011), modeling Gaussian processes on manifolds (Mal-
lasto & Feragen, 2018; Liu et al., 2024) or doing statistics
on measurements of orientations (Lopez-Custodio, 2024).

In this paper, we focus on wrapping Gaussian distributions
on the Riemannian manifold of Symmetric Positive Definite
(SPD) matrices equipped with the Affine Invariant Rieman-
nian Metric (Pennec, 2020). Gaussian distributions are a
cornerstone of machine learning and statistics (see p.102 of
Casella & Berger 2001) due to their ubiquity and theoretical
underpinnings, such as the Central Limit Theorem (CLT)
(Section 5.4 of Wasserman 2004), which ensures that Gaus-
sian distributions naturally arise in many scenarios. We will
see that we are able to extend the CLT to wrapped Gaus-
sians, providing a theoretical justification for their study.
SPD matrices, which form the Riemannian manifold P,
are pivotal in numerous applications, including Diffusion
Tensor Imaging (Pennec, 2020), Brain-Computer Interfaces
(BCI) (Lotte et al., 2018), process control (Willjuice Irutha-
yarajan & Baskar, 2010), and video processing (Tuzel et al.,
2008). The inherent Riemannian geometry of Py necessi-
tates adopting methods that respect its manifold structure
when analyzing SPD data.

This paper is organized as follows: in Section 3, we in-
troduce the Riemannian geometry of P;. Next, we define
wrapped Gaussians on P4 and explore their theoretical prop-
erties in Section 4. In Section 5, we develop a Maximum
Likelihood Estimator for parameter estimation and validate
it with synthetic experiments. Building on this founda-
tion, Section 6 revisits existing classifiers on P, through a
probabilistic lens and introduces novel classifiers based on
wrapped Gaussians. Finally, we evaluate these classifiers
with synthetic and real-world datasets in Section 6.4.
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2. Related works

Other works have already tried to extend the Gaussian distri-
bution to a Riemannian manifold. Said et al. (2018) propose
an isotropic Gaussian on a Riemannian Symmetric Space
M defined using a center of mass § € M and a scaling fac-
tor o > 0. In our work, we are looking for a more complex
model, requiring a non-isotropic distribution with some pre-
ferred directions. A non-isotropic Gaussian distribution on a
manifold has been proposed in Pennec (2006), in which the
authors use the characterization of the Gaussian distribution
as the distribution that maximizes entropy given a mean and
a covariance matrix (theorem 13.2.2 of Kagan et al. 1973).
However, sampling this distribution leads to computational
difficulties, the normalizing constant cannot be computed
explicitly and in the case of a full covariance matrix, the
estimator of the parameters becomes problematic.

Wrapped distributions have first been studied in directional
statistics (Mardia & Jupp, 2000), on a circle (Collett &
Lewis, 1981) or on a sphere (Hauberg, 2018). Wrapped
Gaussians have also been instantiated on hyperbolic spaces,
first by Nagano et al. (2019) and then by Mathieu et al.
(2019) and Cho et al. (2022). They mainly use it as the
distribution of the latent space of a Variational Autoencoder
which is trained to learn the distribution. Apart from the
manifold, another difference with our approach is that they
wrap the Gaussian using a composition of the exponential
map with parallel transport where we will only use the expo-
nential map. Wrapped distributions have also been studied
on more general classes of Riemannian manifolds. For
example, Galaz-Garcia et al. (2022) define wrapped distri-
butions on homogeneous Riemannian manifolds. A major
difference with our work is that they use a volume preserv-
ing map to push-forward the density from the tangent space
to the manifold, leading to a simpler expression of the den-
sity, without any volume change term. In Chevallier et al.
(2022) and Chevallier & Guigui (2020), the authors work
on general symmetric spaces and mainly study the Jacobian
determinant of the exponential map, first in a general setting
and then on different examples (Grassmannians, pseudohy-
perboloids and special Euclidean group). Unlike our work,
they consider the distribution on the tangent space to always
be centered, where we consider a more general setting by al-
lowing 1 # 0. To estimate the parameters of their wrapped
Gaussians, they use moment estimation. Finally, in Troshin
& Niculae (2023), they define a more general wrapped Gaus-
sian, the S—Gaussian that has a compact support.

In the following, we propose a wrapped Gaussian on the
manifold of SPD matrices that is not centered on the tangent
space. After deriving some theoretical properties, we show
that our wrapped Gaussian can be used in practice, showcas-
ing the estimation of the parameters from a finite number
of samples. Finally, we use our wrapped Gaussian to build

a framework that unifies and generalizes classification on
SPD matrices, and propose new classifiers. This application
shows the potential of our wrapped Gaussian to become a
generic, flexible and powerful tool for manifold-based data
analysis.

3. How to deal with SPD matrices ?
3.1. The Riemannian geometry of SPD matrices

The set of d x d symmetric, positive definite (SPD) matrices,
denoted Py is defined as follows:

Py={pe R | pl =pandVz € R\ {0},2"pz > 0}.

This set is convex and open in the set of d x d symmetric
matrices Sy and thus, it is a manifold of dimension d(d+1)/2.
For all p € Pg, the tangent space 1, P at p can be identified
with S;. Moreover, for p € P, one can define an inner
product on the tangent space 1}, P at p by:

Yu,v € T,Pa, (u,v), = tr(p”tup~tv). ()

This inner product is called the Affine Invariant Rieman-
nian Metric (AIRM) (Pennec, 2020) as, if a is an invert-
ible matrix, one has (aua’,ava’) . = (u,v),. Once
endowed with this metric, P, is a complete connected
Riemannian manifold of non-positive curvature (see Ap-
pendix I of Criscitiello & Boumal 2023). It is there-
fore a Hadamard manifold (Shiga, 1984). Using the Car-
tan—Hadamard theorem (theorem 12.8 of Lee 2018) one
has that Py is diffeomorphic to R*“*"/2 through the ex-
ponential map Exp,: T,Pq ~ R"“*"/2 — P;. Another
consequence of the completeness of Py is that each pair of
points (p, ¢) € P3 can be connected by a unique minimiz-
ing geodesic whose length defines a distance on Py. This
AIRM distance, between p and ¢ is given by:

8(p,q) = || log(p~2qp~/?)||r )

where log is the matrix logarithm and | - || the Frobe-
nius norm. Other useful tools of Riemannian geometry
that will be used in the following are the exponential map
Exp,: TyPa — Paq and its inverse, the logarithm map
Log,: Pa — T,Pa. Forp,q € Pgq and u € TPy, those
maps are given by the following expressions (see chapter 6
of (Bhatia, 2007)):

Exp,(u) = p'/? exp(p~ ' ?up~'/?)p'/?,
Log,(q) = p"/?log(p~/%qp~/)p*/2.

Finally, when P, is equipped with the AIRM metric given
at Equation (1), the Riemannian volume element at p =
[[pi;]] € Pais given by (see Section 4.1.3 of Terras 1988):

3)

dvol(p) = det(p) /2 T dpy, @

1<j
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Figure 1. An illustration of a wrapped Gaussian WG (p; p, X2).

where dp;; is the Lebesgue measure on R. The volume dvol
is also invariant under congruence by invertible matrices.

Remark 3.1. Other metrics could be used on P4, such as
the Log-Euclidean metric (Arsigny et al., 2005) or the S-
divergence metric (Sra, 2015). However, the AIRM metric
is widely used in the literature and has many properties that
make it suitable for our work (such as the affine invariance).
For more details on the different metrics on P4, we refer the
reader to Chevallier et al. (2021) and Thanwerdas (2022).

3.2. The vectorization of the tangent spaces

As described in Section 3.1, the tangent space 1, P4 at point
p € Py is identified with the space of d x d symmetric
matrices S; which is isomorphic to R*“""/2. We define
such an isomorphism called the vectorization as follows:

Definition 3.2 (Vectorization). We start by defining the
vectorization at identity for a symmetric matrix u = [[u;;]]:

Vecty, : u € Ty, Pa —(ur1, V2u12, usz, V2u13, vV2us3, uss,
ey \/ﬁudflyd, udd) € Rd((Hl)/z

Then, for p € P4, we define the vectorization at p:

Vect,: u € TpPq +— Vectr, (p~ '/ 2up™/?).

One of the important property of Vect,, is that it is an isom-
etry between (T,Pg, (-, )p) and (Rd(d+1)/2 (-, -)5). More
information on this vectorization can be found in Section
3.3.3.3. of Pennec (2020) or in Appendix A.

4. Wrapped Gaussian on the manifold of SPD
matrices

In this work, our objective is to define a non-isotropic Gaus-
sian on the manifold of SDP matrices Pg. In this section, we
define a wrapped Gaussian through the way it will be sam-
pled. We will also give the density of a wrapped Gaussian
and, we will show that, unlike usual probability distributions,

Algorithm 1 Sampling from a Wrapped Gaussian
WG(p; 1, )

Require: p € Py, p € R*“V/2 5 € Pacaryy,
1: Sample t ~ N (p, )
2: Compute X < Expp(Vectgl(t))
3: Return X ~ WG(p; p, X)

a given wrapped Gaussian can be parametrized by different
sets of parameters, leading to an equivalence relation. In the
following, we will denote © = Py x R*“*"/2 x Pacas1y,
the space of parameters of the wrapped Gaussian which is a
product manifold.

4.1. The definition

To define a wrapped Gaussian, we start with a classical
Euclidean Gaussian random variable in R*““"*/2 and push
it on the manifold Py using the exponential map as follows:

Definition 4.1 (Wrapped Gaussian). Let p € Py, p €
R*“*/2 and ¥ € Pacat1y,. A random variable X on Py
follows a wrapped Gaussian denoted WG(p; i, X) if

X = Exp,(Vect, ' (t)), t ~ N (1, %).

A wrapped Gaussian is illustrated in Figure 1. This gives
us a very simple algorithm to sample a wrapped Gaussian
WG(p; u, X), since it is simply based on the sampling of
N (1, ¥) in TPy and the computation of Vect,, Land Exp,
that has closed-form formulas. We provide a sampling al-
gorithm at Algorithm 1. Moreover, we can rewrite this
definition using a push-forward (see definition 2.1 of Peyré
& Cuturi (2020), Section 3.6 of Bogachev (2007) or Ap-
pendix B):

WG (p; p, %) = (Exp,, 0 Vect, #N (1, %) (5)

where # denotes the push-forward operator.

Let us comment on the different parameters: p gives us a tan-
gent plan from which the Gaussian is wrapped, so it locates
the Gaussian on the manifold. p is the mean of the Gaussian
in the tangent space T),P;. As Pq and T, P, are in bijection
through the exponential map, p and p play a symmetric role
that will be unveiled in Section 4.4. Finally, X is the covari-
ance matrix between the entries of the SPD matrices. In the
special case where the SPD matrices are covariance matri-
ces, > models the covariance of the covariances, therefore,
it can be seen as a fourth order moment.

4.2. The density of a wrapped Gaussian

Now that we have defined the wrapped Gaussian, we give its
density using the push-forward definition of WG(p; u, X)
given in Equation (5) (see Theorem B.2 in Appendix B)
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Theorem 4.2. The density fp., s of the wrapped Gaussian
WG (p; p, X) exists and is:

gz (Vecty(Log, (z)))
W P ’ S - °
z € Pa, fppz(@) |Jp(Log, ()| ©

where g, s is the density of the multivariate Gaussian
N (i, ¥) and Jp(-) = det(d Exp,(-)) is the Jacobian deter-

minant of the exponential map Exp,,.

The Jacobian determinant of the exponential map describes
the volume change induced by the identification of T}, Py
and Py by the exponential map Exp,. To compute the
density explicitly, one needs to compute the Jacobian J, (u),
which has a closed form expression for the manifold Py (see
Section 5.3 of Chevallier & Guigui (2020) or Appendix C).

Proposition 4.3. The Jacobian determinant of the exponen-
tial map at the identity Exp;  is:

Ai(u) = Aj(u)

sinh (Ai(u)*kj(u))
Yu € Tjdpd, J[d (u) = 2d(d_1>/2

i<j

where the \;(u) are the eigenvalues of u. Then, one can use
the previous formula to compute the Jacobian determinant
of the exponential map at any point p € Py:

Yu € T,Pq, Jp(u) = Ji, (p_l/zup_1/2).

It should be noted that, unlike the wrapped Gaussians de-
fined in Galaz-Garcia et al. (2022), Troshin & Niculae
(2023) and Nagano et al. (2019), we do not restrict our-
selves to a centered multivariate Gaussian A/ (0, X) on the
tangent space T,,P4. In our case, we allow the wrapped
Gaussian to have an extra parameter y, thus extending the
flexibility and applicability of the model. Having a non-
centered distribution on the tangent space 1,,Pq leads to
new considerations that will be discussed in Section 4.4.

Remark 4.4. In this work, we focus on extending the mul-
tivariate Gaussian to a Riemannian setting. With no extra
difficulty, one could wrap an Elliptically Contoured distri-
bution (EC) on P (chapter 6 of Johnson (1987) or Delmas
et al. 2024). We give more detail on this in Appendix F.

4.3. Some properties of wrapped Gaussians

Let us now give some properties of the wrapped Gaussians.
We start by a rescaling property.

Proposition 4.5. Let X ~ WG(I; Od(d+l)/2, Id(d+1)/2) and
let (p,u, X)) € O. There exists a transformation of X de-
noted V such that

U(X) ~ WG(p; u, X).

Thus, the wrapped Gaussian WG (1g; 0aca+1y/2, Laca+1)/,) is
a building block of the wrapped Gaussians.

One can find a proof of this result, as well as an explicit
expression for ¥ in Appendix D.

Then, we give a wrapped version of the multivariate Central
Limit Theorem (CLT) (Theorem 5.12 of Wasserman 2004)
for the manifold P,. For this, we define the logarithmic
product introduced in Arsigny et al. (2006):

Definition 4.6 (Logarithmic product). Let p,q € P,4. The
logarithmic product of p and q is defined as:

p©®q=-exp (logp+logq).

Equipped with this logarithmic product, (P4, ®) forms a
commutative group that is isomorphic to (Sy,+)'. One
can generalize this notation to the sum of n SPD matrices
D1y Pn a8 iy pi = p1 @+ O py,. Using this logarith-
mic product, we can state the following theorem:

Theorem 4.7 (Wrapped CLT). Let (X;);en+ be a sequence
of i.i.d. random variables on P;. We suppose that the
sequence (Vectr,(Logr, (Xi)))ien- of random variables
on RUHD/2 gdmits a finite second order moment. We

denote by p the mean and by ¥ the covariance matrix of
Vecty, (Logy,(X1)). Then,

1

(é(xi ® m1)> . L WG(I40,%)

) n— o0
=1

d e
where —— denotes the convergence in distribution and
n—oo

where m = Expy, (Vectj_d1 ().

This theorem shows the interest of wrapped Gaussians, as
they naturally appear in the limit of a logarithmic product
of random SPD matrices. The proof of this theorem can be
found in Appendix E. One can note that by generalizing the
logarithmic product defined in Definition 4.6 to another tan-
gent space 1,4, one can extend the limit to WG(p; 0, X).

We can also give information on the mean of WG(p; i, )
in the special case of ; = 0 i.e. when the distribution on the
tangent space T,,P; is centered. We recall from definition
3 of Pennec (2019) that a mean, or exponential barycenter,
of a probability distribution o on Py is defined as a point
p € Pq satisfying [, Log;(z)da(z) = 0. For wrapped
Gaussians, one has the following result:

Proposition 4.8. A mean of WG(p; 0,X) is p.
The proof is straightforward from the definition of the

wrapped Gaussian WG(p; 0, 3).

"More information on the properties of this logarithmic product
can be found in Arsigny et al. (2006).
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Figure 2. Illustration of the equivalence between two wrapped
Gaussians given by Proposition 4.9.

4.4. An equivalence relation between wrapped
Gaussians

A key property of the Euclidean Gaussian N (p, X) is its
identifiability, meaning that the map (p, X) — N (i, 2) is

one-to-one (definition 1.5.2 of Lehmann & Casella 1998).

The notion of identifiability is important when one wants
to learn the parameters of a distribution from a finite set of
samples as we will do in Section 5. If we consider a model
based on the wrapped Gaussian, we lose this property as we
have the following proposition, illustrated in Figure 2:

Proposition 4.9. Let (p, 1, X) € © and t € R. One has
that WG (p; 1, ) and WG(etp; u — tv, ) are equal where
v = Vect,(p) = (1,---,1, 0,---,0 )€ R/
——

d ones d(d—1)/2 zeros

All the proofs of this section can be found in Appendix G.

One can verify using Equation (3), that ¢ — e’p is the
geodesic y: t — Exp,(tp) in Py starting at point p and with
initial velocity p (as p is a symmetric matrix, it also belongs
to T,Py ~ S4). Moreover, the map t — p —tv = p —
t Vect,,(p) is also the geodesic in R*“*/? with initial point
(¢ and initial velocity —v = — Vect,,(p). Therefore, when p
is pushed in one “direction” (initial velocity p), u is pushed
in the opposite “direction” (initial velocity — Vect,(p)).

A wrapped Gaussian can thus be represented by several sets
of parameters, so we define an equivalence relation between
sets of parameters that define the same wrapped Gaussian:

Definition 4.10. Let 0, = (pa, fta;, Xa) € O and O3 =
(ps, 13, 28) € O be two sets of parameters. Then, 6, and
03 are equivalent, which we denote by 6, = 03, if they
define the same wrapped Gaussian i.e.

WG(pa; ta, Za) = WG(]?B; Ha, 25).

We denote by [0,,] the equivalence class of 6,,:
[6a] = {6 = (0", 1/, X) [ 0= 00}

Using Proposition 4.9, one has the immediate corollary:

Corollary 4.11. Let 0, = (pa, fhas2a) € O and 05 =
(pg, 13, 2p) € ©. If there exists t € R such that pg
€'Pas g = o + t Vect,, (pa) and X = X, then 0,
0s.

Remark 4.12. All equivalence classes do not contain a
wrapped Gaussian that is centered on the tangent space
(1 = 0). Let us consider a wrapped Gaussian WG(p; u, X).
Then, the equivalent wrapped Gaussians are of the form
WG(etp; pp — tv, X)) for t € R. If p and v are aligned i.e.,
there exists ¢ € R such that . = tv, then the equivalence
class contains a wrapped Gaussian with ¢ = 0. However,
when pandv = (1,---,1,0,---,0) are not aligned (for ex-
ample, take p = v+ (1,---,0) =(2,1,---,1,0,---,0)),
then there exists no ¢ € R such that ;. = tv and the equiva-
lence class does not contain a wrapped Gaussian with . = 0.
Therefore, allowing 1 # 0 increases the expressiveness of
the model.

o~

Once we have defined an equivalence class [f] of parameters
that define the same wrapped Gaussian, it is natural to define
a representative of [f]. We define it as follows:

Definition 4.13 (Representative of an equivalence class).
We choose as representative of the class [6], the tuple of pa-
rameters §Min = (pmin_ymin y3min) guch that 4™™ is minimal
in the sens of || - ||2. We call it the minimal representative.

One is able, given a tuple of parameters 6 = (p, i, 2), to
compute the minimal representative of the class [f] of equiv-
alent tuples of parameters using the following proposition:

Proposition 4.14. Let 0 = (p, 1, X) € O be parameters.
Then, the minimal representative of the class [0] as defined
at Definition 4.13 is ™" = (p™in, ymin Ymin) where

min __ 1 ‘.i, i min __
P = e ity =

Ul =

d
Z iV, yymin _ g
i=1

where we recall that v = (1,---,1,0,---,0) € R**V/2,

This minimal representative will be used in the following.

5. Estimation of the parameters of a wrapped
Gaussian distribution

In this section, we tackle the parameter estimation problem
of a wrapped Gaussian given samples. After introducing the
Maximum Likelihood Estimator we will use, we lead some
synthetic experiments to assess its performance.
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Figure 3. Results of the synthetic experiment on the estimation of parameters of a wrapped Gaussian using an MLE.

5.1. A Maximum Likelihood Estimator

Let 21, ...,2 be N SPD matrices of size d x d indepen-
dently sampled from a wrapped Gaussian with unknown
parameters 60* = (p*, u*, ¥*) supposed to be minimal in
the sens of Definition 4.13. Our goal is to estimate 6* given
the samples (x1, ..., z ) using a Maximum Likelihood Esti-
mator (MLE) (see Section 9.3 of Wasserman 2004). Let us
introduce the likelihood £ of the model:

N
Ly (pip, X) = H fosp, s (@)
i=1

where fp., s is the density of the wrapped Gaussian
WG(p; u, X2) as given in Equation (6). We will also
consider the log-likelihood ¢, defined as ¢x(p; u, 2) =
log L (p; 14, 2). Then, we define the classical MLE Oy =
(PN, N, by ~) as the parameter 6 that maximizes £y (or
equivalently £,). In the Euclidean setting, one has a closed
form of the MLE of y and ¥, obtained by computing the gra-
dient of ;. When dealing with wrapped Gaussians on Py,
we were not able to derive a closed form for the MLE px
of the parameter p. Moreover, it is unlikely that there exists
such a closed form, as for example, there is no closed form
for the Riemannian mean on P; (Moakher, 2005). Never-
theless, the MLE of p and X are analogous to the Euclidean
setting but depend on p*:

Proposition 5.1. The MLE i and SN of the parameters
wand X of the wrapped Gaussian are:

N

R 1

fin = 7 D VLog,. (1),
i=1

N

A 1

Xy = N Z (VLog,. (zi) — fin) (VLog,. (z;) — ﬂN)T
)

where VLog,,. = Vecty o Log,,..

One can note that in proposition 4.7 of Galaz-Garcia
et al. (2022), they also have a closed from for the
MLE of ¥ that depends on p* without any closed form
for pn. In practice, we used a Riemannian Conju-

gate Gradient algorithm (Boumal, 2023) on the prod-
uct manifold © = Py x R*““/2 x Pyaiay), to com-
pute the optimal parameters (py, fin, Sn). We imple-
mented this MLE in Python using the toolbox Pymanopt
(Townsend et al., 2016). The codes for the different
experiments is available at https://github.com/
thibaultdesurrel/wrapped_gaussians_SPD.

This estimation problem can become challenging as the
dimension d of the considered SPD matrices increases. In
fact, the number of coefficients to estimate is:

dd+1) d(d+1) d*(d+1)?+2d(d+1)
2 2 8

N——— N——
p 1% P

which grows at a rate of O(d*). For example, if d = 10,
there are 1, 650 coefficients to estimate and if d = 30, the
number jumps to 109, 275. One should thus make sure that
the number of samples NV is sufficiently big for results of
the MLE to make sense. To get around this issue when the
number of samples is small, one can assume that the co-
variance matrix X is diagonal, which reduces the number of
coefficients to O(d?). This assumption implies independent
entries of the SPD matrices and will be used in Section 6.4.

In other works, such as in Chevallier et al. (2022) or in
Chevallier & Guigui (2020), the authors use the method of
moments (see Section 9.2 of Wasserman 2004) to estimate
the parameter. In our case, we can use the method of mo-
ment only when we know a priori that * = 0. Then, as
given in Proposition 4.8, a mean of the wrapped Gaussian
is p*, therefore, it can be estimated using the Riemannian
mean py = &(x1,...,xx) (Moakher, 2005), and X can be
estimated using Proposition 5.1. However, in a more general
case of p* # 0, estimating p* using the Riemannian mean
does not lead to the correct estimation of the true parameters.
We give more details on why in Appendix H.

5.2. Synthetic experiments

We led some synthetic experiments to evaluate the MLE’s
performances. For this, we sampled N points from
a wrapped Gaussian in P; whose minimal parameters
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(p*, p*,X*) are known. Here, ¥* is always chosen to be
a full SPD matrix. Then, we optimize the MLE to find
(PN, N, )y ~ ), and compare the true and minimal estimated
parameters: for p and X, we compare them using the AIRM
distance and for p, we use || - ||2. In this experiment, we
looked at how the estimation error evolves when the number
of samples N grows from 100 to 10,000. We also compare
different dimensions d € {2,5,10}. More details on the
experimental setup are given in Appendix I. The results of
this experiment can be found in Figure 3. We can see that,
as one would expect, as the number N of points sampled
grows, the estimation error decreases. Moreover, we can
remark that the dimension d does not affect the results of the
estimation of p and p, but really affects the estimation of 3.
The higher the dimension d, the higher the error § (f] N, 2¥)
is. This is coherent as the number of parameters of X grows
as O(d*), so even a small increase of the dimension d leads
to an important increment in the estimation error of . We
also led some experiments in the case where the covariance
matrix Y is diagonal. We show, in Appendix J, that in this
case, one needs fewer samples to have a good estimation of
> when the dimension d rises.

6. Classification using wrapped Gaussians

In this section, we demonstrate that widely used geometry-
aware classifiers on Py can be integrated into a probabilistic
framework. We also introduce new classifiers based on the
wrapped Gaussian and conduct experiments on real-world
data from various applications.

6.1. Classifiers used for SPD matrices

MDM The Minimum Distance to Mean (MDM) algorithm
described in Barachant et al. (2010) is a popular classifier for
SPD matrices. Given a training set of labeled SPD matrices,
the MDM computes the Riemannian mean (Moakher, 2005)
&, of each class k € {1,..., K}. Then, given a new SPD
matrix p, the predicted class k is the class for which the
distance between p and &, is the smallest.

LDA and QDA In a Euclidean setting, the Linear Dis-
criminant Analysis (LDA) (section 4.3 of Hastie et al. 2009)
is a classifier that assumes that each class k € {1,..., K}
is modeled by a multivariate Gaussian A (py, ) where the
covariance matrix Y is shared among all the classes. First,
the parameters of each class are learned using an MLE on
the training data. Then, to classify a new point z, LDA
compares the log-likelihood of z according to each class
and chooses the class that has the highest log-likelihood.
As the covariance matrix is shared among the classes, the
decision boundaries are linear, which led to its name: linear
discriminant analysis. When one assumes that the covari-
ance matrices are not equal among the classes, i.e. each

class is modeled by N (uy, X ), the decision boundaries are
quadratic. This classifier is called Quadratic Discriminant
Analysis (QDA). One can restrict the covariance matrices to
be diagonal, which leads to the Diagonal LDA and Diagonal
ODA classifiers (Dudoit et al., 2002). Then, the Diagonal
QDA classifier is equivalent to the Gaussian Naive Bayes
classifier (see chapter 8 sec 3.3 of Bishop 2007).

A possible extension of LDA (or QDA) to the manifold of
SPD matrices Py is call Tangent Space LDA (or Tangent
Space QODA) and is described in part IV B. of Barachant
et al. (2012). The Riemannian mean & of the training set
is computed, and all training points are sent to the tangent
space T Pg via the logarithm map Log. Then, a classical
LDA (or QDA) can be used in this Euclidean space.

Other classifiers from SPD matrices Other classifiers
that have been developed for SPD matrices. For example,
Multinomial Logistics Regression has been extended for
SPD matrices in Chen et al. (2024). They rely on metric that
are pulled back from the Euclidean space which is not the
case of the AIRM metric we use in our work. Several deep
learning approaches have been proposed to classify SPD
matrices (Huang & Van Gool, 2017; Brooks et al., 2019;
Nguyen, 2021). However, most of these approaches distort
the geometry of the manifold and are out of the scope of
this work, as our approach does not rely on deep learning.

6.2. A general probabilistic framework

Our goal is to show that the MDM, Tangent Space LDA
and Tangent Space QDA can be seen as part of a proba-
bilistic framework on the manifold of SPD matrices. More
precisely, we will show that the previous classifiers can be
rewritten as Maximum Likelihood based classifiers (like the
classical LDA or QDA) where the different classes are mod-
eled using distributions on the manifold P,. Let us consider
K classes of labeled SPD matrices and let us denote o, the
modeled distribution of class k.

MDM For the MDM classifier, we first need to recall the
isotropic Gaussians on Py introduced in Said et al. (2018).
Lety € Py and o > 0, then, the isotropic Gaussian denoted
G(y, o) is defined by the following density:

5(1/717)2}

202

Yy € Pa, fy.0(y) = % exp {

where ((o) is a normalizing constant. This normalizing
constant depends only on ¢, and not on ¢ as shown in propo-
sition 1 of Said et al. (2018). If one supposes that each
class is modeled by an isotropic Gaussian with a shared o
among all the classes i.e. a = G(Jx, o) then, the MDM
is equivalent to a maximum likelihood classifier. Here, the
spread o of the isotropic Gaussians does not play any role




Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices

Dataset H Application Dimension # matrices # classes Reference
BNCI2014004 BCI 3x3 720 x 9 subjects 2 (Leeb et al., 2007)
Zhou2016 BCI 5x5 320 x 4 subjects 2 (Zhou et al., 2016)
AirQuality Atmospheric data 6x6 102 3 (Smith et al., 2022)
Indiana Pines || Hyperspectral imaging 5x5 14,641 12 (Baumgardner et al., 2015)
Pavia Univ. Hyperspectral imaging 5x5 185,176 6 -
Salinas Hyperspectral imaging 5x5 94,184 17 -
Textile Image Analysis 10 x 10 16,000 2 (Bergmann et al., 2021)
BreizhCrops Multispectral imaging 13 x 13 177,658 6 (RuBwurm et al., 2020)
Table 1. Summary of the datasets used for the experiments.
Dataset | Acc. MDM Acc. TS-LDA  Acc. TS-QDA  Acc. H-WDA  Acc. He-WDA
BNCI2014004 || 78.71 (£14.53) 78.73 (£14.52) 76.07 (£13.94) 75.38 (£14.40) 74.37 (£14.73)
Zhou2016 91.18 (£5.51) 91.21 (+5.50) 89.45 (£7.43) 85.92 (£9.20)  82.86 (+11.65)
Air Quality 94.05 (£6.53) 94.05 (£6.53) 97.05 (£4.45)  96.05 (£4.17)  97.00 (£4.47)
Indiana 58.01 (£0.72) 67.07 (£0.53) 73.38 (£0.45) 73.74 (£0.51)  74.30 (£0.83)
Pavia Uni. 72.32 (£0.59) 84.61 (£0.06) 87.16 (£0.09)  87.36 (+£0.07)  85.54 (£0.15)
Salinas 36.42 (£0.12) 46.30 (£0.17) 69.87 (£0.21)  71.20 (£0.33)  62.39 (+0.22)
Textile 83.08 (£0.62) 83.12 (£0.63) 86.03 (£0.66)  86.26 (+£0.59)  85.93 (£0.77)
BreizhCrops 45.48 (£0.25) 47.67 (£0.32) 50.72 (£0.28) 54.66 (+£0.45) 51.33 (£0.58)

Table 2. Accuracy of the different classifiers on the different datasets we consider.

in the classification process. So, during training, one only
has to estimate g, for each class, which is the center of
mass and can be estimated using the Riemannian mean (see
proposition 7 of Said et al. 2018).

Tangent Space LDA or QDA For the Tangent Space
LDA, we will leverage the Wrapped Gaussians introduced
in Section 4. Suppose that each class is modeled by a
wrapped Gaussian centered at &, the Riemannian mean of
the training set, and with a shared covariance matrix X for
the Tangent Space LDA i.e. o, = WG(®; puy, 2) or with
one covariance matrix X per class for the Tangent Space
QDA ie. ar = WG(®; uk, Xk ). Then, the Tangent Space
LDA (or Tangent Space QDA) is a maximum likelihood
classifier based on those distributions.

6.3. Wrapped Discriminant Analysis

Having placed the various classifiers that are used on the
manifold of SPD matrices in a probabilistic framework,
we propose a new maximum likelihood classifier based
on the wrapped Gaussians introduced in Section 4. First,
let us model each class by a wrapped Gaussian with a
shared covariance matrix > among the classes: aj =
WG (py; g, X). To learn the parameters of each class, we
optimize an MLE on the whole model to find the parameters:

K N

(p17 e DKLy ey LK E) € argmax H prk;/ikxz(xf)
L

where (xf)izlﬁ,,,Nk are the training points of class k. The

implementation is the same as in Section 5. We call it the
Homogeneous Wrapped Discriminant Analysis (Ho-WDA).

As for the QDA, we propose another version of this classifier
where each class has its own covariance matrix Xj: o =
WG (pk; puk, X ). We call this classifier the Heterogeneous
Wrapped Discriminant Analysis (He-WDA). In that case, an
MLE is optimized on each class individually, as in Section 5:

Ny,
Vk e {1,..,K}, (pk, bk, Zk) € argmafop%g(xf).

Psi, 2 i=1
6.4. Experiments

In this section, we want to compare the Ho-WDA and He-
WDA to the other classifiers (MDM, Tangent Space LDA
denoted TS-LDA and Tangent Space QDA denoted TS-
QDA) used on the manifold of SPD matrices P, and detailed
in Section 6.1. For this, we lead some experiments on 8
different real datasets coming from several applications.
We give a summary of the datasets used in Table 1 and
more details on each one of them in Appendix K. For this
experiment, we restricted ourselves to the case where the
covariance matrices X are diagonal. Therefore, one has
fewer coefficients to estimate and the MLE needs less points
to converge. We give the accuracy of the classifiers we study
on the different datasets at Table 2.

We can see two different behaviors. First, on the datasets
with a lot of matrices (Textile, Salinas, Indiana Pines, Pavia
Univ., BreizhCrops), the Ho-WDA and He-WDA perform
the best. The number of parameters to estimate is high, so
the more samples one has, the better the estimation will be
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as we illustrated in the synthetic experiments at Section 5.
For BreizhCrops, even if the matrices are of size 13 x 13,
we have a lot of points (177,658) so the MLE is able to
correctly estimate all the parameters. Secondly, on the BCI
datasets (BNCI2014004 and Zhou2016), we have signif-
icantly less points (less than 1,000) so the estimation of
the parameters of the underlying wrapped Gaussians is less
precise. In this case, one can see that the MDM and the
TS-LDA perform the best and the Ho-WDA and He-WDA
perform less well. However, on the AirQuality dataset, the
Ho-WDA and He-WDA perform the best. This is interest-
ing as the number of matrices available in the dataset is
small (102). An explanation could be that the underlying
distribution of the data is not very complex, so a few points
are enough to correctly estimate them. In BCI datasets, the
distribution is more complex, so one needs more points to
correctly estimate the distribution. Finally, we do not ob-
serve a clear dominance of the He-WDA over the Ho-WDA.
This is similar to the difference between the LDA and QDA
where, often, an LDA can correctly classify data. In the-
ory, the Ho-WDA should be a special case of the He-WDA
where the covariance matrices for each class are the same.
However, in practice, as the number of points per class can
be small and as the number of parameters to estimate is
higher for the He-WDA, the estimation of the covariance
matrices per class can be noisy and the performance of the
He-WDA can be worse than that of the Ho-WDA. For ex-
ample, for the dataset Salinas, some classes have only a
few hundred samples, which is not enough to estimate the
covariance matrix accurately. The Ho-WDA, on the other
hand, estimates a single covariance matrix for all the classes
and is less sensitive to the number of samples per class.

7. Conclusion

In this work, we present a generalization of non-isotropic
multivariate Gaussians on the manifold of SPD matrices:
Wrapped Gaussians, and we give some theoretical prop-
erties. We solved the non-identifiability of our model by
defining an equivalence relation between the set of parame-
ters that define the same wrapped Gaussian. We also give all
the tools needed to use the distribution in practice, such as
an easy-to-use sampling algorithm or an MLE that correctly
estimates the parameters of a wrapped Gaussian. Finally,
we showed that the MDM, TS-LDA and TS-QDA classi-
fiers can be seen as part of a probabilistic framework using
wrapped Gaussians. We introduced two new classifiers
based on the wrapped Gaussian: Ho-WDA and He-WDA.
We showed that the Ho-WDA and He-WDA perform well on
real data when the number of samples is sufficient. In future
work, we plan to investigate the use of wrapped Gaussians
to perform data augmentation or transfer learning. More-
over, as we have developed in the paper a geometry-aware
Gaussian distribution, it becomes possible to extend all the

classical machine learning models that rely on Gaussian
distributions to the manifold of SPD matrices. We are aware
that computing exponential and logarithmic maps remains
a bottleneck in SPD matrix geometry. However, a trade-
off may exist between computational cost and performance
gains. Theoretically, Euclidean Gaussian-based methods ex-
tend to Py via our wrapped Gaussian, though practical chal-
lenges will arise in applications, requiring careful choices.
For example, one could develop Gaussian Mixture Models,
Hidden Markov Models or Variational Autoencoders on Py
using wrapped Gaussians. These models could then be ap-
plied to various tasks such as clustering, sequence modeling,
or anomaly detection on manifold-valued data. It could
also be possible to explore the use of wrapped Gaussians in
the context of Bayesian inference, which could open new
avenues for probabilistic modeling and uncertainty quantifi-
cation in manifold-based data analysis.
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Impact statement

This work introduces a flexible and theoretically grounded
extension of Gaussian distributions to the Riemannian man-
ifold of Symmetric Positive Definite (SPD) matrices, which
appear in numerous application domains such as neuroimag-
ing (e.g., EEG/BCI), remote sensing, atmospheric modeling,
and computer vision. By leveraging a non-isotropic wrapped
Gaussian model, our approach respects the intrinsic geome-
try of SPD matrices, offering a more principled statistical
modeling framework for manifold-valued data.

The proposed distribution, along with the associated maxi-
mum likelihood estimator and probabilistic classifiers, can
enhance the interpretability, robustness, and effectiveness of
machine learning models in applications where geometric
constraints are crucial. For example, in Brain-Computer
Interfaces (BCI), this work may contribute to more accurate
and stable classification of neural signals, potentially bene-
fiting assistive technologies. In environmental sciences, the
method can aid in more accurate statistical modeling of air
quality data represented as covariance matrices.
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However, as with any advancement in data modeling, espe-
cially in sensitive domains such as neuroscience, there is
a possibility that improved interpretability or classification
performance could be misused. For instance, fine-grained
neural decoding could be exploited for persuasive technolo-
gies or behavioral profiling, raising ethical concerns around
privacy and consent. We thus emphasize the importance of
applying these techniques within responsible and ethically
guided frameworks.
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A. The vectorization used

In Section 3.2, we defined an isomorphism between the tangent space T,P4 at point p € Pg and R*“*/2_ This isomorphism
is called the vectorization and is denoted Vect,,. This isomorphism is not the only one that exists between the two spaces, so
in this section we will motivate our choice of the vectorization and give some of its properties.

Let p € P4. We recall that the tangent space T},P; at point p is a Euclidean space once equipped with the inner product
defined at Equation (1). Therefore, one can unveil an orthonormal basis of 7},P4. One can see that the tangent space at the
identity T7,P, is the classical Euclidean space S equipped with the Frobenius inner product. Therefore, one can easily
build an orthonormal basis of 17, P4 and then, transport it to the other tangent spaces.

Proposition A.1 (Orthonormal basis of the tangent spaces). Let e;; be the d x d matrix with a 1 at position (i, j) and zeros
everywhere else. Then

* An orthonormal basis of (T1,Pa, (-, ) 1,) is (E1,,ij)i<; defined as follows:

€ii fori=j.

1 . .
—=(ei; +ej;) fori<yj,
Eld,ij:{ﬂ( e

* An orthonormal basis of (TyPa, (-,*)p) is (Ep.i;)i<; where Ep ;i = p'/?Ey, ;;p'/2.

Proof. One has that T1, P4 ~ &4 and that (-, ), is the Frobenius inner product, so one can use the classical basis of S, to
build an orthonormal basis of T7,P4. Then, by transporting the basis of T7, Py to T}, Py using the isometry z + p'/2xpl/2,
one has a basis of T,P,. It is still orthonormal as = +— p'/2xp'/? is an isometry. O

Let us give another intuition on the choice of this basis for (T, Pyg, (-, )p):

Proposition A.2. The basis (E, ;;)i<; of (TpPa, (-, -)p) given at Proposition A.1 is the parallel transport of the basis
(B1a.3)i<i of (T, Pa, (- ) 1,) from T1, Pg to T Pa.

Proof. According to Equation 22 of Sra & Hosseini (2015), in the case of Py, the parallel transport I';,_,,, from 17, Py to
T, Pqg is:
Yu € Tr,Pa, Tr,p(u) = pPupt/?.

The result follows from the definition of (E, ;;)i<;- O

Now that we have an orthonormal basis of the tangent space T,,P4, we give the link between this basis and the vectorization
Vect):

Proposition A.3. Let (E,, ;;)i<; be the orthonormal basis of the tangent space T, Py described at Proposition A.1. Let
u € T,Pq. Then,

VeCtP(u) = (<u, EP711>IM <u, EP712>P7 <u, EP722>P7 T <u, Ep,d—1d>;vv <u, Ep,dd>p)~

Proof. We start with the case where p = I;. Let u = [[u;;]] € T7,Pq ~ S4. We simply need to show that, for i < j, one
has
U ifi=j,
w, Bryij)1, = U
< 1d, J>1d {\/ﬁulj if 7 < j.
One has, when i = j:
(U, Erg i) 1, = (us €)1, = tr(ues;) = .
And when ¢ < j:

(w, E1y,i5)1, = (u, %(% + €ji))1, = %(tf(ueij) + tr(ueji)) = V2u4;.

Therefore, one has the results for Vecty,.
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Now, in the general case of p € Py, one has that, for¢ < j

(u, Bp.ij)p = (u,p* Br,ijp'/*)p = (07 Pup™%, Er, )1,
By using the definition of Vect,,(u) = Vecty, (p~*/?up~'/?) and the result for p = I, one has the result. O
The previous proposition helps us motivate the choice of the vectorization. Indeed, this vectorization is simply the coordinates

of the tangent vector v in the orthonormal basis (E), ;;);<; of the tangent space T),Pq. Now that we are more convinced on
this choice of vectorization, we give some of its important properties.

Proposition A4.  * Letu € T,)Py, then

| Veet, (w12 = Veety (u)T Veety(u) = ul2 = v/{u,u),.
Therefore, Vect,, is not only an isomorphism, it is an isometry between (TyPq, (-, -),) and (R*“™V/2 || - ||2).
* Letu € T, Py, then
|| Vect,,(Log,, u) 13 = Vect,,(Log, u) " Vect,,(Log, u) = 6(p, u)?.

Proof. Let us prove the two points of the proposition.

* Let u € T,;Py4. One has, using Proposition A.3,
I Vect, (w) 13 = Vect, (u) T Vet (u) = Y (u, Ey,ij)y-
1<
As (Ep.j)i<; is an orthonormal basis of the Euclidean space (T, Pg, (-, -);), one has that
D Byighy = llzllp.
1<j
which proves the first point.

* Letu € T,/P,4. One has, using the previous point, the definition of || - ||,,, the expression of the Riemannian logarithm
given at Equation (3) and the expression of the AIRM distance given at Equation (2):

| Vect, (Log, u)[3 = || Log, ull2 = lp~"/* Log, up/|r = | log(p~*up™*)]| 7 = (p.u)”.

O

Finally, let us give a consequence of the previous property on the Jacobian of the vectorization: as Vect,, is an isometry,
there is no volume change via the vectorization.

B. The push-forward

In this section, we give the definition and an important result on the push-forward measure. One can find more information
on the push-forward measure in Section 3.6 of Bogachev (2007).

Definition B.1 (Pushforward measure). Given two measurable spaces (X, Qx) and (), 2y), a measurable map f: Qx —
)y and a measure p1: Qx — [0, +00], the pushforward of p is defined to be the measure f#u: Q3 — [0, +00] given by

VB € Qy, (f#u)(B) = u(f~'[B]).
where f~![B] is the preimage of B by f.

We now give the most important result on pushforward measures: the change of variables

Theorem B.2 (Change of variables). Let i1 be a non-negative measure. An Sy -measurable function g on Y is integrable
with respect to the pushforward measure f# if and only if the function g o f is integrable with respect to the measure . In
this case, one has:

/ o )d(f ) () = / (g0 F)(@)du(a).
y X
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C. The Jacobian determinant of the exponential map on the manifold of SPD matrices

In this section, we give a proof of the result stated at Proposition 4.3. More specifically, we want to show that the Jacobian
determinant of the exponential map Exp;, at identity is:

sinh ( Ai(u)—A;(w) )

P
I, (u) =270
i ===

N

where the (\;(u)); are the eigenvalues of .

Let us start by recalling that, when the tangent plan of interest is at the identity /4, the Riemannian exponential map Expy,
is simply the matrix exponential exp:
Exp;,: u € Tr,Pq + exp(u) € Pq.

One can see this result using the expression of the Riemannian exponential given in Equation (3).

To prove the relation Equation (7), we will start by the case where u is a diagonal matrix. We will then extend the result to
the general case.

Case 1: u € Ty, P, diagonal Let us consider u € T, P, diagonal, u = diag(Aq, ..., Aq). In the following, we will
denote by W the differential of the Riemannian exponential in u: ¥ = d Exp;,(u) = dexp(u). We therefore want to
compute the determinant of W: det W. One has that V: T7, Py — Texp(u)Pa, Where we have identified T, T7,P4 with
T, Pa. To compute the determinant, one need to choose adequate bases in both tangent spaces 17, Pq and T (o) Pa- By
“adequate”, we mean that the transformation between the two bases does not imply any volume change. For this, we consider
for T, P4 the basis (Er,,:j)i<; and for Toyp,)Pa the basis (Eexp(u),ij)i<; as defined at Proposition A.1. According to
Proposition A.2, the transformation from the first to the second basis is the parallel transport, which does not imply any
volume changes, as the parallel transport is an isometry (see Prop 10.36 of Boumal 2023).

Now that we have our two basis, we want to compute the matrix of ¥ in those two bases. For this, we need to compute
U (E7, ;) and express it in the basis (Eexp(v),ij)i<j- As u is diagonal, we can use the Daletskii-Krein formula (see Daletskii
& Krein (1965) or Equation 2.40 of Bhatia 2007) that states the following in our case: for h € T, Py,

\IJ(h) = Hexp[l] (u)”h”H (8)
where
Ai for i =
(). — € %
exp ™ (u)ij = 4 o )
/ { 5o foriF#j

Using the previous formula, one can compute W(E7, ;;) for i < j. Now, one needs to compute the coefficients of W(E7, ;;)
in the basis (Eexp(u),ki)k<t- As the basis (Eexp(u),k1)k<i is orthonormal, one simply needs to compute the dot product
between U (E; dﬂ;j) and one element of the basis to get the corresponding coefficient. For & < [, one has:

<\I/(Efd,ij)7 Eexp(u)7kl>exp(u) = <\IJ(E[d7ij), exp(u/Q)EId,kl exp(u/2)>exp(u) using the definition of Fexp(w) ki
tr (U(Er, ;) exp(—u/2)Er, ki exp(—u/2))  using the definition of the AIRM metric
= (exp(—u/2)V(Ey,,i;) exp(—u/2), Ery )14

Therefore, it is the coefficient (k, ) of the matrix exp(—u/2)W(Ey, ;;) exp(—wu,/2) (up to a factor v/2 when k # ). We now
need to compute this matrix. As u is diagonal, u = diag(\1, ..., Aq), one has that exp(—u/2) = diag(e=*1/2, ..., e=*/2).
Therefore, and using Equation (8), the coefficient (k, ) of the matrix exp(—u/2)¥(ET, i;) exp(—u/2) is:

e Ni/2erigmAi/2 = ] fori=j=Fk=1I,
1 N sinh (2572 . .
ﬁe’/\imﬁe’)‘ﬂz = ﬂﬁ fori # jand (k,1) = (i,7)

0 if (k,1) # (4, 7).

Therefore, the matrix of ¥ in the bases (Ey, i;)i<j and (Eexp(u),kt)r<i is diagonal with diagonal coefficients 1 and

X A — A
smh( e ])
Ai=Aj

. Thus, the determinant of W is the product of these coefficients, which gives the result for the diagonal case.
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Case 2: v € T7,P; general Let us now consider the general case where u € T7,P, is not diagonal. One has that,
as u is symmetric, one can diagonalize it: u = gdg' where g is an orthogonal matrix and d is diagonal. As exp(u) =
gexp(d)g ", one has that dexp(u) - h = g (dexp(d) - (9" hg)) g'. Therefore, as we are only interested in the determinant
of dexp(u), and as g are orthogonal, one has that det d exp(u) - h = det (dexp(d) - (¢ hg)). One thus need to compute
dexp(d) - (g7 hg), and using Dalechii-Krein formula, as in the diagonal case, one has:

dexp(d) - (gThg) = Hexpm (u)”fz”H 9)

where expl!l (u) is defined as above and g hg = [[h;;]]. In order to do the same proof as for the diagonal case, one needs to
modify the basis used in T7,P as in Equation (9), the coefficients of g " hg appear (rather than directly the coefficients of h

as in the previous case). Therefore, we choose as basis for 77, P the basis (Eg)l ;)ij Where E}Z)l i =9E1,; g". One can
easily check that this basis is orthonormal and does not imply any volume changes. One can now use the same proof as for

the diagonal case to compute the determinant of d exp(u), which gives the result for the general case.

D. The building block of the wrapped Gaussians

In this section, we give a proof of Proposition 4.5. For this, we will actually show a more precise proposition:
Proposition D.1. Let (p, 4, 2) € © and X ~ WG(p; u, 2). Then,

1. p~ 2 Xp=12 ~ WG(Ig; 11, %),
2. Exp,(Log, X — Vect, (1)) ~ WG (p; 0g(a+1)/2, %),

3. Exp,(Vect,, (3712 Vect, (Log, X))) ~ WG(p; 1, La(at1)/2)-
Proof. In this proof, we will only show the first two points of the above definition, the third one being similar to them.

1. Let Y = p~%/2Xp~1/2. We want to show that Y ~ WG(Iy; i, ¥). For this, let ¢: P; — R be a continuously
bounded function. One has

E[o(Y)] = /P (V2 Y/2) fo () dvol (2)

- / o(p~ 2ap112) 1 exp (—3(Vect,(Log, (z)) — ) T S~ (Vect,(Log, () — 1))
Pa

dvol(z).
T 1 (log (=1 2ap172)] (@)

Let us now define ¢,,: x ~— p~'/2xp~1/2. ¢, is a C*-diffeomorphism between P, and P,;. Moreover, as the volume
element dvol is invariant by congruence of GL(d, R), the transformation 1, does not imply any volume change.
Therefore, by change of variables y = 1),,(x), one has:

1 exp (=3 (Vect,(Log, (p'/?yp'/?)) — 1) "5~ (Vect, (Log, (p'*yp'/?)) — 1))

Elp(Y)] = | ¢(y) = PRy ey dvol(y)

Py (27)4 det © | J1,(log(p~1/2pt/2yp!t/2p=1/2))|

_ / » 1 exp (=3 (Vect,(p'/? log(y)p'/?) — ) S~ (Vect, (p'/? log(y)p'/?) — ) avol(y)

Pa (2m)7 det 2 |J1,(log(y))]
Finally, using that Vect,(p'/?log(y)p'/?) = Vecty, (p~'/2p'/?log(y)p'/2p~1/?) = Vect,,(log(y)) and Log;, =
log, we have,

1 exp (—3(Vects, (Logy, (y)) — ) "S~" (Vecty, (Logy, (y)) — 1)
E[p(Y)] =/ () = s ! ! )dvol(y).
Pa 2m)ddet S |J1,(log(y))]

This shows us that Y ~ WG(Ig; i, 20).
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2. Let now Y = Exp,(Log, — Vectgl(u)). We want to show that Y ~ WG(p; 0g(a41)/2,2). Let o: Py — Rbe a
bounded continuous function. One has

Ble(V)] = | olBxp, (Log, @ = Vet (1)) fy (o) dvol )

= /P ¢(Exp,(Log, = — Vect, ' (1)))

1 exp (—%(Vectp(Logp(x)) — ,u)TE’l(Vectp(Logp(x)) — ,u))
(2m)d det 2 | Jp(Log, ()]

dvol(z).

Let us now define v,:  +— Exp,(Log, » — Vect,, Y(1)). 1, is a C*-diffeomorphism between P, and P4 and its
inverse is ¢, ' : 3 — Exp,,(Log, = + Vectljl(,u)). By change of variables y = 1,,(z), one has:

E[p(Y)] =

/ W) 1 exp (—% Vectp(Logp(y))—'—E_1 Vectp(Logp(y))) dvol(y)
Pa (2m) det 2 | Tp(Log, (y) + Vect, " ()] | det dipp (v (y))|

We need to compute the change of volume term det di/,, (1) ~!(y)). For this, let us start by saying that di,(z) =
d Exp,,(Log, z — Vect;1 (1)) o d Log, = therefore, det di,(x) = det d Exp,(Log, = — Vect;1 (1)) detd Log,, .

Now using the fact that d Log,(y) = (d Expp(Logp(y)))_1 and the definition of Jp,(u) = detdExp,(u) (see
Theorem 4.2), we have

1
det dy, (z) = J,(Log, = — Vect ! -
1/’17( ) P( gp D (M))Jp(Logp JI)
and thus, plugging 1, ' (y) into the equation:
1
detd —1 = J,(Lo .
¢p(¢p (y)) I)( gp y) Jp(Lng y + Vect;1 (,U/))
Therefore,
1 exp (—% Vect,,(Log, (y)) T¥~! Vect, (Log (y)))
Elp(Y)] = / Y P P dvol(y).
W= [ W) o 7, (Log, ()] )

This shows us that Y ~ WG(p; 0g(441) /2, 2)-

3. For the third point, one can prove it similarly as the two previous one, having in mind that the vectorization Vect,, is an
isometry (see Proposition A.4) therefore, neither Vect,, nor Vect,, ! implies any volume changes.

Therefore, Proposition 4.5 is a direct corollary of the previous result:
Corollary D.2. Let X ~ WG(Ig; 0acat1yjs, Laca+ry,) and let (p, i, X) € ©. Let us define

Uiz ePy s p1/2 Exp, (Vect? (21/2 (Vectp oLog, > + M))) p1/2.

Then, ¥(X) ~ WG(p; p, 2).

E. The wrapped Central Limit Theorem

In this section, we give a proof of the wrapped Central Limit Theorem stated at Theorem 4.7. For this, let (X;);en- be a
sequence of independent and identically distributed random variables on the Riemannian manifold P,;. We suppose that
the sequence (Vecty, (Log;, (X;)))ien+ of random variables on R*“*"”/2 satisfies the classical Central Limit Theorem. We

want to show that the sequence (X;);cn~ satisfies the wrapped Central Limit Theorem.
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Remark E.1. Let us start by saying that, as the map x — Vecty, o Log,, z is a diffeomorphism between Py and RAHV/2,
the sequence (Vect, (Log,(X;)))ien- is also independent and identically distributed.

As the sequence (Vecty, (Log;, (X;)))ien- satisfies the classical Central Limit Theorem in R*“*Y/2 one has that,

n—oo

% Z (Vecty, (Log;,(X;)) — 1) —L L N(0,5).

By defining m = Exp;, (Vectfd1 (1)) € P4, and using the linearity of Vect,:

n— oo

Vecty, (\}ﬁ Z(Logld (X;) — Log,d(m))> —L 5 N, %).

Thus, by applying the continuous map Exp;, o Vect;d1 to the previous equation, by considering the fact that the convergence
in distribution is stable by continuous maps (theorem 5.5 of Wasserman 2004) and the definition of the wrapped Gaussian
(Definition 4.1), one has that

Exp;. (\}ﬁ Z(Log,d (X;) — Logld(m))> — L WG(I,40,%).

n—oo

We can now simplify the left-hand side of the previous equation:

1« 1
EXpI” (\/ﬁ E (Logld (Xz) - LOgId (m))) = exXp (ﬁ E (log X; — log m)) using the expression of Expy  and Logy , of Equation (3)
i=1 i=1

1

n
= exp <Z(10g Xl + log m_1)> using log m = — logm ™!

i1 and exp(ax) = exp(z)® fora € R

4

Therefore, one has the final result of the wrapped Central Limit Theorem:

1

n Vo
(@XiQm_1> — L WG(I40,%).
=1

n—oo

The generalized wrapped CLT The previous version of the wrapped Central Limit Theorem is centered around the
identity matrix /5. However, one can generalize this theorem to any point p € P4. For this, we need to introduce a
generalized logarithmic product ©,, between two points g1, g2 € Pg:

q1 ©p g2 = Exp,(Log, g1 + Log,, ¢2).

In the same way as before, one can show the following generalized wrapped CLT

n—oo

n 7=
( @p Xi Op M_1> —L 5 WG(p;0,5).
=1
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F. An extension to wrapped Elliptically Contoured Distributions

As one can see from the expression of the density of a wrapped Gaussian WG (p; 11, 2) given at Theorem 4.2, it is intrinsically
linked to the density of the multivariate Gaussian A/ (u1, ). This suggests a possible extension to Elliptically Contoured
Distributions (chapter 6 of Johnson (1987) or Delmas et al. 2024). We recall the definition of an Elliptically Contoured
distribution:

Definition F.1 (Elliptically Contoured Distribution). A random vector X € R? follows an Elliptically Contoured distribution
if there exists ;1 € R?, ¥ € P, and a function g such that X has density

fx () = kdet(£)2g ((x —p) 'S (@ — )
where k is a normalizing factor. We denote X ~ EC(u, X, g).

For example, the multivariate Gaussian N'(u, ) is an Elliptically Contoured distribution with g: ¢ — exp(—t/2). Another

example is the multivariate t-distributions for which g: ¢ — (1 + ¢/ V)_d+y/ ? (see V.B of chapter 1 of Delmas et al. 2024).
One can then extend what has been done previously on the wrapped Gaussian to define Wrapped Elliptically Contoured
Distributions just like above:

Definition F.2 (Wrapped Elliptically Contoured). Let p € Py, p € R*“*"/2 % € Pacasry/, and g be a function. Then, a
random vector X on P, follows a Wrapped Elliptically Contoured denoted WEC(p; p, 3, g) if

X = Expp(Vect;I(t)), t ~EC(, 2, 9).

One can then compute the density of WEC(p; i, ¥, ¢) similarly as in Theorem 4.2. Moreover, all the work done on the
equivalence relation for wrapped Gaussians stays valid for wrapped elliptically contoured distributions.

G. The proofs on the equivalence relation
In this section, we want to give proofs of the different results of Section 4.4. We recall the propositions and give their proofs.
Let us start by Proposition 4.9.

Proposition G.1. Let (p,;1,Y) € © and t € R. One has that WG(p; u, ) and WG(elp; u — tv,X) are equal where
V= Vectp(p) =(1,---,1,0,---,0) RAE@HD/2.

Proof. In this following, we denote by ~y the function «y: ¢ — etp. Let us denote by f the density of WG(y(¢); n — tv, %)
and by f the density of WG(p; 1, X). We want to show that f = f. Let x € P4, by Theorem 4.2, one has:

T
) ) exp (; (Vectv(t)(Log,y(t)(z)) —pn+ tu) »-t (Vectv(t) (Logy () — p + tu)>
fx) =

(2m)ddet 2 |ty (Log 4 ()]

One has, that

Log(p) () = 7(8)/2 log(y(t) 2y (8) /) ()2

= e'p!/?log(e™'p~/?ap~/?)p'/?  using that y(t) = e

-1 2commute

= e'p'/?log(e'14)p'/* + ¢' Log,(x) using that e "I, and p~/2xp
= —te'p + ¢’ Log, (x).
Furthermore, one has:

Vect, (1) (Log, ) (z)) = —te' Vect. ) (p) + €' Vect, ;) (Log,(x))  using the linearity of Vect. )
— —te! Vet (1(8) Y2y (6)71/2) + ! Vet (1(t) V2 Log (2)y () /?)
= —tete " Vecty, (p~/?pp~/?) + ete™t Vect, (p~1/? Logp(a:)pflﬂ)
= —t Vect,(p) + Vect,(Log,(z))-
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Therefore, the numerator of the density f can be rewritten as:

exp (;(Vectp(Logp(x)) — ) "7 (Vect, (Log, (2)) — ”)) :

which is the same numerator as f.
Let us now focus on the denominator. One has:
Ty (Lo ) () = 1, (3(6) ™ Logs, o (2)(1) 1)
= Jp,(e""'p7 1/ Log, ;) (x)p~*/?)
= Jr,(—tlqg + p /2 Logp(x)pfl/z) using the computation of Log,y(t)(x).

We recall that the Jacobian determinant of the exponential map at the identity is:

: Ai(u)—X;(w)
i (M2122,0)

Jr, (u) = 2¢
u =2 =75 =
where ();(u)); are the eigenvalues of u. Moreover, the eigenvalues of u := —atly + p~'/? Log, (z)p~'/? are

Ni(u) = —at + A (5712 Log, (2)p™12).
Thus, for all © < j, one has:

Ai(u) = Aj(u) = \; (p‘l/ ?Log,(z)p~/ 2) - (p‘l/ ?Log,(z)p "/ 2)

and therefore, this leads to:
Jia(w) = J1, (p7/* Log, (@)p /%) = J, (Log, (x)) .

So the denominator of the density f is the same as the denominator of the density f and therefore, the two densities are
equal. O

Remark G.2. The function v: ¢ — elp is actually the geodesic with initial point p and initial velocity p. Indeed, the
expression of the geodesic I'; v (¢) with initial point ¢ and initial velocity V' € T, Py is (see Pennec 2020):

VieR, T'yv(t) = ql/2 exp(tqil/Qqul/Z)ql/Z.

Therefore, the geodesic « with initial point p and initial velocity p (which is a symmetric matrix, therefore an element of
Tde >~ Sd) is:
VtEeR, T,,(t) =e'p=~(t).

We now want to show Proposition 4.14 that we recall underneath:

Proposition G.3. Let 0 = (p; u, X)) € © be a tuple of parameters. Then, the minimal representative of the class [0] as
defined at Definition 4.13 is ™" = (p™in; ymin ¥mn) ywhere

i 15~d )
pmm —ed P 'U’lp7

1 &
/~me =pu— gZ#iy7
i=1
me =3
Proof. We want to find the smallest p™n in the sens of || - || and the corresponding p™" such that (p;pu,Y) =
(p™m; pmin EmiN) - As all the p in the equivalence class of [6] are of the form p — tv for t € R, to find the smallest

4™ one needs to minimize the following function:
prt e u—tl3 =l - 2t(u, v) +£||v]3.
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One thus has:
¢ (t) = —2(u, v) + 2t|[vf3.
v)

\#:H% with ||v||2 = d and (i, v) = Zle ;. Therefore, one has:

The minimum is reached at t™" =

i 15~d )
phin — A T niy,

d 1 & 14
Z (mdZm,"wﬂddZui,udH,"',Md(d+1)/2>-
i=1 =1 =1

Q.\H

H. Why does estimating p using the Riemannian mean fails in the general case?

We said in Section 5 that when p* # 0, using the Riemannian mean &(x1, ..., 2 ) does not work to estimate the parameters
(p*, p*,2*%). Let us explain why. For this, we suppose in the following that u* # 0. Let py be the Riemannian mean:
pN = B(x1,...,zn). Then, we can use Proposition 5.1 to compute the MLE of y and X:

AN Logp o (@),

Sy = (VLogy, (z:) — fin) (VLogy, (x:) — fin) "

i

where we recall that VLog,  is the vectorization at p of Log;, i.e. VLog; = Vects, oLog; . Letus focus on fiy.
Using the linearity of Vect;,,, we can write that

N

. 1

an = Vectp, (N ZLogﬁN (ch)> .
i=1

According to proposition 3.4 of Moakher (2005), as py is the Riemannian mean of the points (z1, ..., 2 ), we have the
following:

PN >

N
Z Log;, (w;) = 0.
i=1

Therefore, iy = 0. It is therefore not a good estimator of u* ## 0. That is why we do not use the Riemannian mean as an
estimator of p in a general setting when we do not know a priori that * = 0.
I. More details on the MLE experiments

In this section, we give more details on the setup of the synthetic experiments lead in Section 5 to assess the quality of
the estimation of parameters of a wrapped Gaussian using an MLE. Upon acceptation, we will release the code used to
perform these experiments. To obtain the results plotted at Figure 3, we repeated 5 times the experiment with different true
parameters 6* = (p*, u*, ¥*) randomly generated. Here are details on how we generated the true parameters:

* For p*, we use the function generate_random_spd-matrix from the library PyRiemann (Barachant et al., 2024).
This function generates a random SPD matrix by generating a random matrix A and then computing exp((X + s *
A)T(X + s A)) where X and s are parameters chosen by the user. We set X = 0.1/ and s = 1.

* For p*, we generate a random vector of size d(d+1)/2 with values in [0, 0.1].

¢ For ¥*, we generate a random SPD matrix using the same function as for p* with X = 0.01 140411 /2 and s = 0.02.

We chose relatively small values for X and s because otherwise, when the dimension d is large, the generated parameters
are very far from identity leading to numerical instability.
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Figure 4. Comparison of the estimation of the parameters of a wrapped Gaussian when the covariance matrix X is diagonal or full. The
dimension of the SPD matrices in this experiment is d = 10.

J. Estimating the parameters of a wrapped Gaussian when the covariance matrix X is diagonal

In this section, we detail the experiments on the estimation of the parameters of a wrapped Gaussian when the covariance
matrix X is diagonal. We used the same setup as in the previous experiments detailed in Appendix I except that we
generated ¥* as a diagonal matrix. The diagonal was uniformly sampled in [0, 1]. We repeated the experiment 5 times with
different true parameters. The goal for this experiment was to assess the impact of the structure of the covariance matrix on
the estimation of the parameters. We wanted to show that when the covariance matrix is diagonal, the estimation of the
parameters requires fewer samples. We plotted the results in the case of dimension d = 10 at Figure 4. One can see that,
while the estimation of p and y is not affected by the structure of X, the estimation of X is better when X is diagonal. With a
lot less samples, one can achieve a significantly better estimation of 2 when it is diagonal. This is coherent as the number of
coefficients to estimate is reduced when X is diagonal. Therefore, this setting of X diagonal can be a good choice when the
number of samples is limited.

K. More details on the real data experiments

Let us start by giving more details on the different datasets used in the experiments and the preprocessing we used.

* BCI Datasets: We considered 2 datasets from Brain Computer Interfaces (BCI) for our experiments: BNCI2014001
(Leeb et al., 2007) and Zhou2016 (Zhou et al., 2016). They consist of several subjects and several sessions per subjects
doing a Motor Imagery task (Pfurtscheller & Neuper, 2001). We used the library MOABB (Aristimunha et al., 2023) to
load and preprocess the data. For each EEG, We start by applying a standard band-pass filter with range [7; 35] Hz.
Then, we used the Ledoit-Wolf shrunk covariance matrix (Ledoit & Wolf, 2004) to in order to compute the covariance
matrices and to avoid ill-conditioned matrices. The experiment we lead was cross-subject: each classifier was trained
on all subject except one and tested on this last subject.

* AirQuality: This dataset is from the Beijing Municipal Monitoring Center. It is a dataset of air quality monitored
from 34 different sites in Beijing, China (Hua et al., 2021). For each site, six atmospheric pollutants where recorded
every hour: CO, NOy, O3, PM;(, PM3 5 and SO,. We used the same preprocessing as in Smith et al. (2022) to get a
point cloud of 102 covariance matrices of size 6 x 6. Each covariance matrix has a label depending on which period it
represents: weekdays, weekends or holidays.

* Indiana, Pavia Uni, Salinas: These three dataset of hyperspectral remote sensing datasets are all publicly
available at https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing
Scenes. Each dataset contains one hyperspectral image of a certain region containing a unique number of re-
flectance bands. We applied the same preprocessing that in Collas et al. (2021) or (Bouchard et al., 2024) that consists
in four main steps. First, we normalize the data by subtracting the image global mean. Then, we apply a PCA to reduce
the dimension of the data to 5. A sliding window with no overlap is then used around each pixel for data sampling and
then vectorized. In our experiments, we used a window of size 25 x 25. Finally, we compute the covariance matrix of
each vectorized window using the Sample Covariance Matrix to get a point cloud of covariance matrices. For each
covariance matrix, its class was computed by taking the majority class of the pixels in the window.
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« Textile: This dataset is made of a set of real images from textile manufacturing that contain non-defective and defective
woven textiles. These images come from the public MVTec Anomaly Detection dataset (Bergmann et al., 2021). The
same preprocessing as in Smith et al. (2023) was applied to get the covariance matrices. The two classes correspond to
defective and non-defective textiles.

* BreizhCrops: This dataset is intended for supervised classification of field crops from satellite time series. We used
the dataset FRHO1 that is composed of satellite time series from the French region Finistére. As they are multivariate
time-series, we simply converted them to covariance matrices using the Oracle Approximating Shrinkage estimator
(Chen et al., 2010). The two classes correspond to different types of crops. More details on this dataset can be found in
the original paper (RuBwurm et al., 2020).

For the non-BCI datasets (AirQuality, Indiana, Pavia Uni, Salinas, Textile and BreizhCrops), we used a 5-fold cross-validation
to evaluate the performance of the classifiers.

Let us also give some details on the implementation of the different classifiers used in the experiments.

* The MDM is implemented using the library PyRiemann (Barachant et al., 2024).

* The TS-LDA uses the Tangent Space class from PyRiemann (Barachant et al., 2024) and the LDA from Scikit-learn
(Pedregosa et al., 2011).

* The TS-QDA uses the Tangent Space class from PyRiemann (Barachant et al., 2024) and the Naive Bayes classifier
from Scikit-learn (Pedregosa et al., 2011).

* For the Ho-WDA and He-WDA, we implemented them using our MLE to estimate the parameters of the wrapped
Gaussians. To optimize the MLE, we used in practice the Riemannian Conjugate Gradient method (Boumal, 2023)
with a maximum of 1, 000, 000 iterations and a max time set to 2 hours.
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